Overtone Music Network

a common space & database for harmonic overtones

Töne und Farben / Tones and colors

.
(A short descripton in English down here).

DIE HARMONIKALEN GRUNDLAGEN DER COLORMUSIC

FARBSPEKTRUM <> TONSPEKTRUM
Farben und Töne sind Schwingungen:
Tonspektrum = ca. 20 bis 20.000 Hertz
Farbspektrum = ca. 380 bis 760 Bill. Hz (380 000 000 000 000 Hz bis 760 000 000 000 000 Hz).

Frequenz = Häufigkeit der Schwingungen pro Zeiteinheit, 1 Hz (Hertz) = 1 x pro Sekunde.

TÖNE und OKTAVEN
Oktavtöne sind klanglich eng verwandt.
Sie erhalten gleiche Namen,
z.B.: cis - cis1 - cis2 - cis3
Ein Oktavton hat die doppelte Frequenz des Grundtones;
z.B.: cis = 136 Hertz , cis1 = 272 Hertz.

FARBTON <> TONFARBE
Der eine Rand des Farblichtspektrums hat rund die doppelte Frequenz des anderen.

Bei Oktavierung (=Frequenzverdoppelung) bis ins Lichtspektrum hat ein Ton eine bestimmte Farbe.
Die einfache Formel lautet: f x 2n
f = Frequenz, x 2 = Verdoppelung
n = Anzahl der Verdoppelungen,
z.B.: a = 440 Hz x 240 = 484 Billionen Hz = gelborange.

TONNAMEN <> FARBNAMEN
Die Zuordnung von Farbnamen zu Tonnamen ist grundsätzlich abhängig von der Frequenz des Kammertones. Die oben graphisch dargestellten Tonnamen und deren Farben sind auf ein a1 mit 440 Hz bezogen.

Beispielsweise hatte Wolfgang Amadeus Mozart eine Stimmgabel mit a1 = 421 Hz. Das sind 40 Oktaven höher ca. 463 Billionen Hz, welches wir als "orange" sehen. Anders ausgedrückt: Die Farbe "orange" hatte zu Mozart´s Zeiten dem Ton a entsprochen; bei Verwendung eines heutigen Kammertones von a1 = 440 Hz (oktavanalog ein "gelborange") ist orange ein gis.

Ausführliche Informationen unter www.colormusic.de

SUMMARY IN ENGLISH:

F# = RED
G = RED-ORANGE
G# = ORANGE
A = YELLOW-ORANGE
A# = YELLOW
H = YELLOW-GREEN
C = GREEN
C# = BLUE-GREEN
D = BLUE
D# = BLUE-VIOLET
E = VIOLET
F = RED VIOLET


Colors are higher octaves of tones.
The frequencies of the audible range of tones covers about 10 octaves (from about 20 Hz to 20 000 Hz).
The frequencies of the visible spectrum of colors covers one octave (from about 380 000 000 000 000 Hz to 760 000 000 000 000 Hz).

The name of the notes repeats from ovtave to octave.
The next higher octave is doubling the frequency of the tonic.
The note C# with 136 Hz one octave higher is the note C# with 272 Hz and 41 octave higher the note C# with 598 000 000 000 000 Hz which we see as the color BLUE-GREEN (Emerald).

Annotation:
The assignment from the name of notes to the name of colors basically depends on the frequency of the concert pitch.
Up here the pictured notes are correlated to the A = 440 Hz.

For example Wolgang Amadeus Mozart has used a tuning fork with A = 421 Hz, which is 40 octaves higher the color ORANGE. A note A = 440 Hz 40 octaves higher we see as YELLOW-ORANGE.
This means: The music of Mozart in todays concert pitch of 440 Hz has not the right colors.
- - - - - - - - - - - - - - - - -

This content has been seen 109 times

Comment

You need to be a member of OMN to add comments. Sign up, it's free!

Join Overtone Music Network

Sponsored by:

Latest Activity

Alistair Smith updated their profile
Monday
A photo by Gonzalo Bolla was featured

Overtone singing iniciation in Mallorca Spain - Gonzalo Bolla

What a wonderful group of new overtones singers!! (and some older singers that joined us to support…
Oct 10
2 photos by Bernhard Mikuskovics were featured
Oct 10
A photo by Aionigma was featured
Oct 10
Diphoo commented on the blog post 'Making Music with Overtone Singing'
"Great work !"
Oct 9
Danibal commented on the blog post 'Making Music with Overtone Singing'
"Thank you Stuart. Very inspiring. Great to read more about your approach!"
Oct 9
Annie Boyer commented on the blog post 'Making Music with Overtone Singing'
"lots of thanks for this wonderful gift !"
Oct 9
Stuart Hinds posted a blog post

Making Music with Overtone Singing

I want everybody to have my new book, so I’m giving it away for free! “Making Music with Overtone…See More
Oct 8

© 2017   Impressum - Privacy Policy - Sponsored by Yoga Vidya, Germany -   Powered by

 |  Support | Privacy  |  Terms of Service